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The study of the mechanism of electroweak-symmetry
breaking is one of the major thrusts of the experimental
high-energy-physics program. Following the discovery of
a Higgs-like boson at ATLAS [1] and CMS [2] with a
mass of approximately 126 GeV/c2 and complementary
evidence from CDF and D0 [3], the most pressing ques-
tion is whether this state is in fact the Higgs boson of the
standard model (SM), part of an extended Higgs sector
(such as that of the minimal supersymmetric standard
model, MSSM [4]), a composite Higgs [5], or a completely
different particle with Higgs-like couplings (such as a ra-
dion in warped extra dimensions [6] or a dilaton [7]).

We search for particles in an extension to the standard
model that includes a light neutral Higgs boson, h0, with
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mass mh0 = 126 GeV/c2. Rather than assuming a par-
ticular theoretical framework (such as the MSSM), we
follow a phenomenological approach, using a general two-
Higgs doublet model as a convenient simplified model [8],
which contains a heavy charged Higgs boson H± and a
heavier neutral state H0. In this approach, the search for
a number of specific final states that have the strongest
couplings to Higgs particles is motivated [9, 10]. The fi-
nal state of a W -boson pair (WW ) is enhanced by WW
scattering in models where the Higgs sector is strongly
coupled [11]. This signal has been the subject of much
detailed investigation [12]. The phenomenology of reso-
nant production of the final states Zh0 [13] andW+W−Z
[14] has also been investigated.

In this letter, we focus on the final state W+W−bb̄ [15],
which can have a large production rate from the pro-
cess gg → H0 followed by H0 → H±W∓ with H± →
W±h0 → W±bb̄. The W+W−bb̄ final state is also the
final state of top-quark pair production, and has been
extensively studied. However, no search for Higgs-boson
cascades as described here has been reported previously,
though searches have been performed for charged Higgs
bosons in top-quark decays t→ H±b [16–18].

We analyze a data sample corresponding to an inte-
grated luminosity of 8.7±0.5 fb−1 recorded by the CDF
II detector [19], a general purpose detector designed to
study pp collisions at

√
s = 1.96 TeV in the Fermilab

Tevatron collider. The CDF tracking system consists of
a silicon microstrip tracker and a drift chamber that are
immersed in a 1.4 T axial magnetic field [20]. Projective-
tower-geometry electromagnetic and hadronic calorime-
ters surrounding the tracking system measure particle en-
ergies, with muon detection provided by additional drift
chambers located outside the calorimeters.

The signature of H0 → W∓H± → W−W+h0 →
W−W+bb̄ is a charged lepton (e or µ), missing trans-
verse momentum, two jets arising from b quarks, and two
additional jets from a W -boson hadronic decay. Events
are selected online (triggered) by the requirement of an
electron (e) or muon (µ) candidate [21] with transverse
momentum pT [22] greater than 18 GeV/c. After trig-
ger selection, events are retained if the electron or muon
candidate has a pseudorapidity |η| < 1.1 [22], pT > 20
GeV/c, and satisfies the standard CDF identification and
isolation requirements [21]. We reconstruct jets in the
calorimeter using the jetclu [23] algorithm with a clus-
tering radius of 0.4 in η − φ space. The jets are cal-
ibrated using the techniques outlined in Ref. [24]. At
least four jets are required, each with transverse energy
ET > 15 GeV and |η| < 2.4. Missing transverse momen-
tum [25] is reconstructed using calorimeter and muon in-
formation [21]; in the W+W−bb̄ experimental signature,
the missing transverse momentum is mostly due to the
neutrino from the leptonically-decaying W boson. We
require 6ET > 20 GeV/c. Since such a signal would yield
two jets originating from b quarks, we require (with min-

imal loss of efficiency) evidence of decay of a b hadron
in at least one jet. This requirement, called b-tagging,
makes use of the secvtx algorithm, which identifies jets
from b quarks via their secondary vertices [26].

We model the production of H0 bosons with mH0 =
325–1100 GeV/c2 and subsequent decays H0 → W∓H±

with mH± = 225–600 GeV/c2 and decays H± → W±h0

with mh0 = 126 GeV/c2, all with madgraph [27]. Ad-
ditional radiation, hadronization, and showering are de-
scribed by pythia [28]. The detector response for all
simulated samples is modeled by the geant-based CDF
II detector simulation [29].

The dominant SM background to this signature is top-
quark pair production. We model this background using
pythia with a top-quark mass mt = 172.5 GeV/c2 [30].
We normalize the tt̄ background to the theoretical cal-
culation at next-to-next-to-leading order (NNLO) in the
strong interaction coupling constant, αs [31]. In addi-
tion, events generated by a next-to-leading order pro-
gram, mc@nlo [32] are used in estimating an uncertainty
in modeling the radiation of an additional jet.

The second largest SM background process is the as-
sociated production of a W boson and jets. Samples of
W -boson+jets events with light- and heavy-flavor (b, c)
quark jets are generated using alpgen [33], and inter-
faced with a parton-shower model from pythia. The W -
boson+jets samples are normalized to the measured W -
boson-production cross section, with an additional mul-
tiplicative factor for the relative contribution of heavy-
and light-flavor jets, following Ref. [26].

Backgrounds due to production of a Z boson with
additional jets, where the second lepton from the Z-
boson decay is not reconstructed, are small compared to
the W -boson background and are modeled using events
generated with alpgen interfaced to the parton-shower
model from pythia. The multi-jet background, in which
a jet is misreconstructed as a lepton, is modeled using
events triggered on jets and normalized to a background-
dominated region at low missing transverse momentum
where the multi-jet background is large.

The SM backgrounds due to production of single top
quarks and pairs of vector bosons are modeled using
madgraph interfaced with pythia parton-shower mod-
els and pythia, respectively, and normalized to next-to-
leading-order cross sections [34, 35].

The Higgs-boson candidate mass reconstruction begins
with identification of the leptonically-decaying W boson,
assuming the missing transverse momentum is due to the
resulting neutrino. Of the multiple solutions for the neu-
trino pseudorapidity, we use the smallest value that yields
the reconstructed W mass closest to the known value.
The hadronically-decaying W boson is identified as the
pair of jets that yield the reconstructed dijet mass clos-
est to the known W mass, excluding jets with a b-tag. If
fewer than two jets without b-tags are present, the same
procedure is used but modified to include the b-tagged
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FIG. 1: Distribution of reconstructed Higgs-boson masses in
simulated events. Top: mh0 = 126 GeV/c2 reconstructed as
mbb, center: mH± as mWbb, and bottom: mH0 as mWWbb.

jets. The light h0 is reconstructed from the remaining
b-tagged jets. If fewer than two b-tagged jets remain,
the jet or jets with largest transverse momentum not
associated with the hadronic W -boson decay are used
instead, without significant loss of mass resolution. Fig-
ure 1 shows distributions of the reconstructed mass for
several choices of Higgs masses.

We enhance the signal-to-background ratio through re-
quirements on the mass of the W+W−bb̄ and W±bb̄ sys-
tems, and search for an excess of events above expec-
tations from backgrounds in event distributions versus
the mass of the bb̄ system (h0 → bb̄). Backgrounds have
broad, smoothly decreasing distributions while a signal
would be reconstructed near the Higgs-boson mass.

We consider several sources of systematic uncertainty
on the predicted background rates and distributions, as
well as on the expectations for a signal. Each systematic
uncertainty affects the expected sensitivity to a signal,
expressed as an expected cross-section upper limit in the
no-signal assumption. The dominant systematic uncer-
tainty is the jet-energy-scale uncertainty [24], followed

by theoretical uncertainties on the cross sections of the
background processes. To probe the description of ad-
ditional jets, we compare our nominal tt̄ model to one
generated by mc@nlo and take the full difference as a
systematic uncertainty. We also consider systematic un-
certainties associated with the description of initial- and
final-state radiation [36], uncertainties in the efficiency of
reconstructing leptons and identifying b-quark jets, and
uncertainties in the contribution from multiple interac-
tions. In addition, we consider a variation of the Q2 scale
of W -boson+jet events in algpen. In each case, we treat
the unknown underlying quantity as a nuisance parame-
ter. Except in the case of the normalization uncertainty,
which affects only the overall rates, for each source of un-
certainty we measure the distortion of the mbb̄ spectrum
for positive and negative fluctuations of the underlying
quantity. Table I lists the contributions of each of these
sources of systematic uncertainty to the yields.

TABLE I: Contributions to the systematic uncertainty on the
expected numbers of events for the two main background
processes, the total background yield, and an example 500
GeV/c2 Higgs-boson signal with an assumed total cross sec-
tion of 1 pb.

Process tt̄ W -boson+jets Total bg. Higgs
Predicted yield 229 43 294 341
Jet energy scale 23% - 17% 12%
Radiation 3% - 2% 8%
Q2 scale - 18% 3% -
Mult. interactions 1% 6% 2% -
tt̄ generator 5% - 4% -
Normalization 10% 30% 16% -
Total syst. uncert. 26% 35% 24% 15%

We validate our modeling of the SM backgrounds in
four background-dominated control regions. Each con-
trol region preserves the one lepton and at least four
jet requirements with additional requirements per region.
Events in the first region are used to study the W+W−bb̄
and W±bb̄ mass reconstruction, requiring at least one b-
tagged jet and bb̄ mass smaller than 100 GeV/c2. The
second region probes bb̄ and W+W−bb̄ mass reconstruc-
tion, requiring at least one b-tagged jet and W±bb̄ mass
smaller than 250 GeV/c2. The third region tests the
modeling of W±bb̄ and bb̄ mass reconstruction, requiring
at least one b-tagged jet and W+W−bb̄ mass less than
450 GeV/c2. The fourth region tests the modeling of the
W -boson-plus-jets background, requiring exactly zero b-
tagged jets and W+W−bb̄ mass greater than 450 GeV/c2.
Assuming an H0 production cross section of 250 fb, each
control region is expected to have negligible signal con-
tamination, with the exception of the zero b-tag region
which would include signal events at approximately 10%
of the sample. For two of the control regions, Fig. 2 shows
the reconstructed bb̄ mass distributions which, along with
other similar distributions, indicate that the background
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FIG. 2: Distribution of events versus reconstructed bb̄ invari-
ant mass (mbb̄) for observed data and expected backgrounds
in two control regions. Top, control region consisting events
with at least four jets, exactly zero b-tags and mWWbb < 450
GeV/c2. Bottom, control region consisting of events with
at least four jets and mWbb < 250 GeV/c2. The lower panels
give the relative difference between the observed and expected
distributions; the hatched areas show the combined statisti-
cal and systematic uncertainties of the expected background.
The small dip near 80 GeV/c2 is mainly due to the W -boson
mass reconstruction.

mass distributions are well modeled within systematic
uncertainties.

Figure 3 shows the observed distribution of events in a
representative signal region compared to possible signals
and estimated backgrounds. At each Higgs-boson mass
hypothesis, we fit the most likely value of the Higgs-boson
cross section by performing a maximum-likelihood fit in
the binned mbb̄ distribution, allowing for systematic and
statistical fluctuations via template morphing [37]. No
evidence is found for the presence of Higgs-boson cas-
cade decays in WWbb̄ events. We set upper limits on
Higgs production at 95% confidence level using the CLs
method [38], without profiling the systematic uncertain-
ties. The observed limits are consistent with expectation
for the background-only hypothesis. See Fig. 4 and Ta-
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FIG. 3: Distribution of events versus reconstructed bb̄ invari-
ant mass (mbb̄), for observed data and expected backgrounds
in the signal region. A signal hypothesis is shown, assum-
ing a total cross section of 250 fb, mH0 = 500 GeV/c2, and
mH± = 300 GeV/c2. See Fig 2 for descriptions of lower panel
and hatching.
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In conclusion, we report on the first search for multi-
ple Higgs bosons in cascade decays. For each accepted
event, we reconstruct the lightest neutral Higgs-boson
mass (mbb̄), and find the CDF data to be consistent with
standard model background predictions. We calculate
95% C.L. upper limits on the cross section of such Higgs-
boson production, assuming 100% branching ratio of H0

to W±H∓ and H± to W±h0, from 1.3 pb to 0.015 pb for
masses ranging from (mH0 = 325,mH± = 225) GeV/c2

to (mH0 = 1100,mH± = 600) GeV/c2 respectively, and
interpret the limits in terms of a simplified two-Higgs-
doublet model. While the limits cited here do not ex-
clude any region in the mH0 −mH±-plane in the simpli-
fied model used, there are the first such limits available.
The larger center-of-mass energy and integrated luminos-
ity of data collected by the LHC experiments are likely to
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TABLE II: Signal region definitions and expected and ob-
served 95% C.L. upper limits on the production cross section
times branching fraction for each Higgs-boson mass hypothe-
sis. Theoretical predictions are also shown [39–41].

(mH0 ,mH±) mH± mH0 Exp (Obs) Theory
(GeV/c2) (GeV/c2) (GeV/c2) Limit (fb) (fb)
325, 225 > 175 > 275 1100 (1300) 34
400, 300 > 225 > 325 960 (1100) 18
425, 225 > 200 > 375 900 (960) 13
500, 300 > 200 > 450 470 (590) 3.9
500, 400 > 350 > 450 510 (700) 3.9
525, 225 > 100 > 500 420 (460) 2.5
600, 300 > 200 > 550 200 (180) 0.76
600, 400 > 350 > 550 210 (250) 0.76
700, 400 > 325 > 650 90 (100) 0.15
700, 600 > 450 > 650 10 (96) 0.15
725, 225 > 425 > 700 90 (120) 0.10
800, 300 > 275 > 750 50 (51) 3× 10−2

800, 600 > 475 > 725 43 (46) 3× 10−2

900, 400 > 450 > 775 28 (36) 6× 10−3

900, 600 > 475 > 800 24 (29) 6× 10−3

1100, 600 > 475 > 975 13 (15) 2× 10−4

have the sensitivity to discover or exclude such models.
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